(1)风力发电系统构成技术:
①风力发电机
a)按容量分:
容量在0.1~1kW为小型机组,1~100kW为中型机组,100~1000kW 为大型机组 ,大于10000kW 为特大型机组。

b)按风轮轴方向分
水平轴风力机组
水平轴风力发电机科分为升力型和阻力型两类。升力型风力发电机旋转速度快,阻力型旋转速度慢。对于风力发电,多采用升力型水平轴风力发电机。大多数水平轴风力发电机具有对风装置,能随风向改变而转动。对于小型风力发电机,这种对风装置采用尾舵,而对于大型的风力发电机,则利用风向传感元件以及伺服电机组成的传动机构。
风力机的风轮在塔架前面的称为上风向风力机,风轮在塔架后面的则成为下风向风机。水平轴风力发电机的式样很多,有的具有反转叶片的风轮,有的再一个塔架上安装多个风轮,以便在输出功率一定的条件下减少塔架的成本,还有的水平轴风力发电机在风轮周围产生漩涡,集中气流,增加气流速度。
垂直轴风力机组
垂直轴风力发电机在风向改变的时候无需对风,在这点上相对于水平轴风力发电机是一大优势,它不仅使结构设计简化,而且也减少了风轮对风时的陀螺力。
利用阻力旋转的垂直轴风力发电机有几种类型,其中有利用平板和被子做成的风轮,这是一种纯阻力装置;S型风车,具有部分升力,但主要还是阻力装置。这些装置有较大的启动力矩,但尖速比低,在风轮尺寸、重量和成本一定的情况下,提供的功率输出低。
c)按功率调节方式分
定桨距机组
定桨距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行的,采用小电机使桨叶具有较高的气动效率,提高发电机的运行效率。失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。
变桨距(正变距)机组
变桨距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。
主动失速(负变距)机组
将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速肘,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出,随着风速的不断变化,桨叶仅需要微调维持失速状态。制动刹车时,调节桨叶相当于气动刹车,很大程度上减少了机械刹车对传动系统的冲击。主动失速调节型的优点是其言了定奖距失速型的特点,并在此基础上进行变桨距调节,提高了机同频率后并入电网。机组在叶片设计上采用了变桨距结构。其调节方法是:在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,通过变桨距系统调节限制风力机获取能量,保证发电机功率输出的稳定性,获取良好的动态特性;而变速调节主要用来响应快速变化的风速,减轻桨距调节的频繁动作,提高传动系统的柔性。变速恒频这种调节方式是目前公认的最优化调节方式,也是未来风电技术发展的主要方向。变速恒频的优点是大范围内调节运行转速,来适应因风速变化而引起的风力机功率的变化,可以最大限度的吸收风能,因而效率较高;控制系统采取的控制手段可以较好的调节系统的有功功率、无功功率,但控制系统较为复杂。
d)按传动形式分
高传动比齿轮箱型机组
风轮的转速较低,必须通过齿轮箱、 齿轮副的增速来满足发电机转速的要求。 齿轮箱的主要功能是增速和动力传递。
直接驱动型机组
应用了多极同步风力发电机,省去风力发电系统中常见的齿轮箱, 风力机直接拖动发电机转子在低速状态下运转。
中传动比齿轮箱(“半直驱”)型机组
采用一级行星齿轮副,其增速比约为高传动比齿轮副的 1/10,因而减少了多极同步风力发电机的极数和体积。
e)按转速变化分
定速机组
转速恒定不变,不随风速变化。
多态定速机组
包含两台不同转速和容量的发电机,可根据风速的变化,选投其中一台运行。
变速机组
发电机转速随风速变化。
②风轮技术
目前大型叶片的结构都为蒙皮主梁形式,蒙皮主要由双轴复合材料层增强,提供气动外形并承担大部分剪切载荷。后缘空腔较宽,采用夹芯结构,提高其抗失稳能力,这与夹芯结构大量在汽车上应用类似[5]。主梁主要为单向复合材料层增强,是叶片的主要承载结构。腹板为夹芯结构,对主梁起到支撑作用。
叶片结构设计应依据相关设计规范。目前叶片结构设计规范主要建立在IEC国际标准和德国GL标准基础上,要求结构满足静力强度、疲劳强度和叶尖挠度要求。复合材料叶片各铺层是交错铺放的,实际初步设计时,将所有双轴布视为一层,所有单轴布视为一层,这样做对结构强度和性能影响不大[4]。叶片结构铺层是分段设计,各段厚度都不一致,应对厚度进行连续化处理,最终设计的各铺层厚度还应为各单层厚度的整数倍。
③变桨系统技术
变桨距控制系统的主要功能是通过调整桨叶节距在00~900变化,以改变气流对叶片的攻角,在风机的启动过程中依靠风力方便的自行起动,在达到额定风速时使风机能够稳定的保持输出功率恒定,以及在达到切出风速后使浆叶全顺浆(900),进行空气制动,改善风机和浆叶的受力情况。变桨距控制属于伺服控制系统,给定值是风机的输出功率,控制对象是桨叶的角度和变桨速度,系统根据给定的输出功率对叶片角度进行闭环控制,风机达到满负荷后当风速增大则增大桨叶角度,始终保证风机在切出风速以内满负荷运行而不至于过载。
④齿轮箱技术
目前,水平轴风电机组主要有双馈式、直驱式和半直驱式等形式。近几年来直驱技术在凤电领域得到了重视和发展,目前的单机容量已达到2 Mw,在未来风电机组发展中将有很大的发展空间。但考虑到技术成熟度、成本、运输和易大型化等无可比拟的优点,在相当长的一段时间内,增速箱机组仍将是主流。介于直驱与双馈机组之间的半直驱机组(速比一般小于40)近年来也处于研发阶段。
大型风电增速箱的速比约为100,一般需采用三级齿轮传动,目前成熟的结构形式主要有1级NGW行星+2级平行定轴,NW行星+1级平行定轴,2级NGW行星+l级平行定轴等结构形式;主轴和齿轮箱的支撑形式有三点式、二点式及紧凑式(集成式)等;行星传动有传统的三行星轮和3个以上的多行星轮,浮动方式有鼓形齿太阳轮结构(短轴).花键太阳轮结构(长轴)及柔性行星轮轴结构等。
⑤偏航系统技术
偏航系统是水平轴式风力发电机组必不可少的组成系统之一。偏航系统的主要作用有两个:其一是与风力发电机组的控制系统相互配合,使风力发电机组的风轮始终处于迎风状态,充分利用风能,提高风力发电机组的发电效率;其二是提供必要的锁紧力矩,以保障风力发电机组的安全运行。风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。被动偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有尾舵、舵轮和下风向三种;主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,常见的有齿轮驱动和滑动两种形式。对于并网型风力发电机组来说,通常都采用主动偏航的齿轮驱动形式。
⑥刹车系统技术
风力发电机中有两种刹车装置:空气动力刹车与机械刹车。
叶尖扰流器形式的空气动力刹车,是目前定桨距风力发电机组设计中普遍采用的一种刹车形式。当风力发电机组处于运行状态时,叶尖扰流器作为桨叶的一部分起吸收风能的作用,保持这种状态的动力是风力发电机组中的液压系统。液压系统提供的液压油通过旋转接头进入安装在桨叶根部的液压缸,压缩叶尖扰流器机构中的弹簧,使叶尖扰流器与桨叶主体联为一体;当风力发电机需要停机时,液压系统释放液压油,叶尖扰流器在离心力作用下,按设计的轨迹转过90度,成为阻尼板,在空气阻力下起制动作用。变桨距风力发电机的空气动力刹车是通过桨叶迎角的变化来实现的。
制动系统的驱动机构是液压系统,主要用来执行风力机的开关机指令。通常它由两个压力保持回路组成,~路通过蓄能器供给叶尖扰流器(变桨距风力发电机是供给变桨距机构),另~路通过蓄能器供给机械刹车机构。这两个回路的工作任务是使风力发电机组运行时制动机构始终保持压力。当需要停机或制动时,两回路中的常开电磁阀先后失电,叶尖扰流器一路压力油被卸回油箱(对变桨距风力发电机是指桨叶的迎角发生变化),实现空气动力刹车动作。稍后,机械刹车这一路压力油卸回油箱,驱动刹车闸,使风轮停止转动。在两个回路中各装有两个压力传感器,以指示系统压力,控制液压泵站补油和确定刹车机构的状态。
⑦控制系统: 风力发电系统智能控制技术
主控制器监测电力参数、风力参数、机组状态参数,启/停其他功能模块,实时监控风电系统工作状态。人机界面主要实现运行操作、状态显示、故障记录、趋势曲线、绘制报表、用户管理等功能。软切入控制的主要功能是限制发电机并网和大小发电机切换时的冲击电流、平稳风力发电机并网过渡过程。偏航控制系统主要包括自动偏航、手动偏航、90°侧风、自动解缆等功能[2]。大型风电机组均采用主动对风控制,当风轮主轴方向与风向标指向偏离超出允许偏差范围且持续一定时间后,偏航系统控制伺服( 偏航) 电动机运转使风轮主轴方向跟踪主风向。液压系统执行风力机的变桨距和制动操作,实现风电机组的功率控制、转速控制及开停机控制。制动系统是风电机组安全保障的重要环节,在定桨距机组中,通过叶尖挠流器执行气动刹车; 而在变桨距机组中,通过控制变桨距机构也可控制机械刹车机构。
另外,风电机组的控制设备还包含安全保护系统,是传感器和工控机的集成,包括超速保护、电网失电保护、电气保护( 过电压及短路保护、防雷击保护等) 、机组振动保护、发电机过热保护等,主要执行停机和紧急停机程序,具有最高优先权,可进入至少两套刹车系统。
(2)风力发电系统调节技术:
①最大风能捕获技术
并网后,在额定风速以下,调节发电机反转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用变速与桨叶节距双重调节,限制风力机获取的能量,保证发电机功率输出的稳定性,减轻了桨距调节的频繁动作,获得了良好的动态特性,提高了传动系统的柔性,已成为目前公认的最优化调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使功率系数保持在最佳值,从而最大限度地吸收风能,效率高;能吸收和存储阵风能量,可减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;而且还可控制有功功率和无功功率,改善电能质量。但控制复杂,成本高,需要避免共振的发生。
②风力发电系统低电压穿越技术
低电压穿越LVRT , 指在风机并网点电压跌落的时候, 风机能够保持并网, 甚至向电网提供一定的无功功率, 支持电网恢复, 直到电网恢复正常, 从而“穿越”这个低电压时间( 区域) 。
电压跌落会给电机带来一系列暂态过程, 如出现过电压、过电流或转速上升等, 严重危害风机本身及其控制系统的安全运行。一般情况下若电网出现故障风机就实施被动式自我保护而立即解列, 并不考虑故障的持续时间和严重程度, 这样能最大限度保障风机的安全, 在风力发电的电网穿透率( 即风力发电占电网的比重) 较低时是可以接受的。然而, 当风电在电网中占有较大比重时, 若风机在电压跌落时仍采取被动保护式解列, 则会增加整个系统的恢复难度, 甚至可能加剧故障, 最终导致系统其它机组全部解列, 因此必须采取有效的LVRT措施, 以维护风场电网的稳定。
③功率控制技术
在风速超过额定风速时,变速风电机组的控制系统通过调节风力机风能利用系数,实现保持发电机输出功率恒定、使机组传动系统具有良好柔性的基本目标。
目前,有两种改变风力机风能利用系数的方法: 1) 控制发电机电磁制动转距,以调节发电机转速,进而调整叶尖速比; 2) 调节桨距角以改变风轮迎风面积,从而调节空气动力转矩。应该指出,理想的控制方案是采用转速与桨距双重调节。
④速度控制技术:
a)恒速恒频技术(cscv)
恒速恒频风力发电系统多采用鼠笼式异步发电机,不管风速如何变化,发电机都维持在高于同步速附近作恒速运行以实现发电频率的恒定。自然风吹动风力机,经齿轮箱升速后驱动异步发电机将风能转化为电能。由于异步发电机在运行过程中,需要吸收一定的无功功率,因此,一般此类风力发电机在机端都会装设有并联电容器组,以减少机组对电网的无功需求。
b)变速恒频风力发电(VSCF)技术: 交流励磁
变速恒频风力发电系统是指在风力发电过程中,发电机的转速可以随风速变化,然后通过适当的控制措施使其发出的电能变为与电网同频率的电能送入电力系统,核心在于变频器的应用,发展程度直接依赖于电力电子技术的日益成熟。这种风电系统目前发展较为迅速的是基于双馈感应发电机的变速恒频风电机组和直驱式同步发电机的风电机组。
⑤风速测量技术
目前, 常用的风速传感器测量仪器有风杯风速仪、毕托管(或称皮托管) 风速仪、热线热膜风速仪、超声波测风仪、激光多普勒测速仪和粒子成像速度场仪等。
软测量技术主要解决工业过程中普遍存在的、目前无法或难以在线测量的过程变量(主导变量)的检测问题。软测量方法的原理是建立待测变量(主导变量)与可测或易测过程变量(辅助变量)之间的非线性函数关系, 通过软件对可测变量进行变换计算, 从而间接估计出待测变量。它是以软件来代替硬件(传感器)功能的。
由于风力发电机组处于三维时变风场环境中, 且受湍流、塔架、风剪差及地表粗糙度等因素的影响, 风速在整个风力机旋转平面上的分布是不同的。基于上述风速计测量得到的风速仅是机舱顶部上一点的风速(除P IV测速外), 与整个风力机旋转平面所受到的有效风速有较大差别, 因此, 有效风速是不能直接测量的, 但它可通过软测量方法进行估计。
⑥风速预测技术
欧美等西方国家早在二十世纪七、八十年代就组织了许多针对风能资源的观测试验及评估方法研究, 相继开发了风能资源评估软件或系统。其中WASP应用最为广泛, 其核心物理模型是一个微尺度线性风场诊断模式, 而近地层风场的形成是一个非线性、多因子影响的过程, 因此在复杂地形应用该软件会产生比较大的误差。由于风能资源分布范围广、能量密度相对较低且具有一定的不稳定性, 准确的资源评估是进行风能资源开发利用的关键环节, 而进行资源评估的前提是必须掌握风能资源的形成机理与分布特征。
我国风能资源丰富区主要分布在三北北部以及沿海岸线陆上离海岸线距离3-5公里的范围内。实践发现, 对于我国北部风能资源丰富区内的风电场来说, 除了需要进步考虑低温、沙尘暴等极端天气条件外, 选择目前国内外技术成熟的风电机组, 基本可以满足风电场建设的需要, 但这一区域内, 电网条件往往成为制约其风能资源开发利用的限制条件在这一区域的外围区域, 风能资源有所减弱, 但电网、交通等风电建设的配套条件要好很多。对于沿海风能资源丰富带内, 除了北部部分省市外, 大多数地区存在台风的影响, 并且与北部风能资源丰富带相比, 这些区域的风能资源相对要弱一些, 即所谓的高生存风速、低平均风速地区。根据IEC有关标准, 如果在沿海区域建设风电场, 则必须选择风力机设计安全等级高、成本高的风电机组。同时, 我国内陆的大多数省份, 风能资源相对贫乏, 但也存在一些风能资源相对丰富、呈孤岛式分布的小范围区域。我国的风能资源研究工作始于二十世纪七十年代, 气象部门曾先后进行过三次风能资源普查, 在最近完成的“全国大型风电场建设前期工作”中, 根据全国2400余气象台站实测资料对全国风能资源分布进行了更为详细的普查, 估算出全国离地面10米高度层上的风能资源量, 其中我国陆地上离地面10米高度风能资源技术可开发量为3亿千瓦。近年来, 国际、国内的大部分风能资源方面的研究计划、项目主要是进行风能资源评估技术手段的研发, 很少有针对风能资源形成、分布、变化机理以及评估技术原理的研究。
⑦风能与建筑—体化(BIWE)技术
建筑上一般采用小型或微型风力发电机,这类产品在我国已经有较为成熟的技术,目前主要供应没有电网连接的偏远农村使用,而在我国城市,很少能够看到风力发电机的影踪。以现在的技术水平和人们观念的接受程度,风力发电机完全可以在都市中找到一席之地。在加拿大多伦多,安装在国家展览馆的风力发电机至今已经生产了超过100 万kwh 的绿色电能,并且成为该市一座新的地标;在日本,近年来开发出的专用于写字楼、商店和家庭使用的“小型微风风力发电机”正在向社会大力推广,只要有能使树叶摇动的微风(2m/s 左右风速),就能使发电机工作。用于建筑的小型或微型风力发电机,风车高度3~5m,叶片直径2~4m,非常适合夜间建筑亮化照明等用途。
如果希望在建筑设计中采用风力发电系统,需要了解建筑所在区域的风力资源情况,同时还要考虑设备噪音问题是否会给周围社区带来影响(噪音是限制风力发电机在城市发展的重要因素之一,幸运的是,目前已经有“静音”型产品问世)。
与常规能源相比,风力发电的最大问题是其不稳定性,解决这个问题可以采取的方式有:1)与电网相连(电网实际充当了巨大的蓄电池); 2)采用大型蓄电池; 3)采用“风力-光伏”互补系统1); 4)采用“风力-柴油机”互补系统。以我国目前的情况,建筑中可以考虑2、3、4 方案。
由于风轮机的输出功率与风速的立方成正比,因而风力发电机常常被安装在屋顶上,建筑师必须考虑工业产品的风轮机如何与建筑物的造型、风格相协调。国外有一些建筑师亲身参与风力发电机(确切地说是风塔) 的造型设计,利用横轴或是纵轴、叶片数量与翼展的变化,设计出造型优美、雕塑般的风力发电设施。