QB

中华人民共和国行业标准

QB/T 1927,1928-93

制浆造纸设备能量平衡及 热效率 计算方法

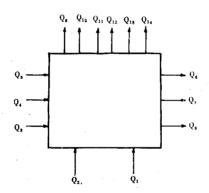
1994-01-06 发布

1994-08-01 实施

中华人民共和国行业标准

OB/T 1927. 16-93

石灰转窑能量平衡及热效率计算方法


1 主题内容与适用范围

本标准规定了制浆造纸企业生产过程的体系或设备能量平衡及热效率计算方法。 本标准适用于制浆造纸企业碱回收石灰转窑的能量平衡和热效率计算。

2 引用标准

QB/T 1927.1 制浆造纸企业设备能量平衡计算方法通则

3 能量平衡方框图

3.1 体系边界

石灰转窑的体系是从窑头开始至引风机人口止。

3.2 图中符号意义

- Q1---燃料供给燃烧热;
- Q2--燃料供给显热;
- Q3----人窑空气显热;
- Q.——物料带入显热; Q.——雾化蒸汽带入热;
- 中华人民共和国轻工业部 1994-01-06 批准

中国节能减排支撑网www.jnjpzg.co OB/T 1927, 16-93

- Q。——物料中水分蒸发吸热;
- Q, ——碳酸钙生成氧化钙反应吸热;
- Q。——烧成石灰带出显热;
- Q。——燃料含水蒸发吸热
- Q.,----排干烟带出显热;
- Q...—排烟中水蒸汽带出显热;
- Q12--燃料未完全燃烧损失热;
- Q13 --- 客体辐射损失热;
- Q14---其他损失热。
- 以上符号的热量单位均为吉焦/小时,GI/h。
- 3.3 计算时的基准温度为环境温度。
- 4 能量平衡及设备热效率计算
- 4.1 计算参数
- 4.1.1 燃料

消耗量,kg/h;

燃料应用基低位发热量,kJ/kg;

入窑燃料温度,℃:

燃料比热,kJ/(kg·K);

燃料含水量,kg/h。

4.1.2 雾化蒸汽

耗用量,kg/h:

热焓,kJ/kg。

4.1.3 物料

绝干物料量,kg/h;

物料比热,kI/(kg·K):

入窑温度,℃:

物料含水量,kg/h。

4.1.4 空气

入窑的空气量,m3/h;

平均比热,kJ/(m³·K);

人窑时空气温度, ℃。

4.1.5 石灰

产成品灰量,kg/h;

比热,kJ/(kg·K);

出窑温度,℃。

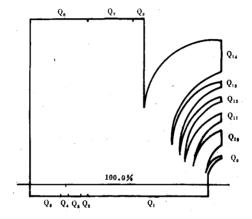
4.1.6 排烟

干烟气量,m3/h;

- 122 -

	干烟气平均比热,kJ/(m³·K);	
	排烟温度,℃;	
	烟气中水蒸汽量,m³/h;	
	水蒸汽比热,kJ/(m³·K);	
	一氧化碳量,kg/h。	
4. 2	输入能量计算	
4. 2.	1 燃料供给燃烧热 Q ₁ ,GJ/h,按(1)式计算	
	$Q_1 = Br \cdot Q_{YD} \times 10^{-6}$	(1)
式中	· Br——燃料消耗量,kg/h;	
	Q _{YD} ——燃料应用基低位发热量,kJ/kg。	
4. 2.	2 燃料供入显热 Q₂,GJ/h,按(2)式计算	
	$Q_2 = Br \cdot c_r(t_2 - t_0) \times 10^{-6}$	(2)
式中	ワ; c _r 燃料的比热,kJ/(kg・K);	
	t _r ——燃料人窑时的温度,℃;	
	t。── 环境温度, ℃。	
	注:摄氏温度 t(C)之差等于热力学温度(K)之差。	
4. 2.	3 人窑空气显热 Q ₃ ,GJ/h,按(3)式计算	
	$Q_3 = V_k \cdot c_k(t_k - t_0) \times 10^{-6}$	(3)
式中	7: V _k ——人窑空气量,m³/h;	
	c _k ——空气平均比热,kJ/(m³·K);	
	t _k ——人窑空气温度,℃。	
4. 2.	4 物料带人显热 Q,,GJ/h,按(4)式计算	
	$Q_{s} = (G_{d} \cdot c_{d} + W, \cdot c_{s})(t_{1} - t_{0}) \times 10^{-6} \cdots$	(4)
式中	□; G _d ——人窑绝干物料量,kg/h;	
	c _d ——绝干物料比热,kJ/(kg • K);	
	W,——人窑物料带水量,kg/h;	
	c _s ——水的比热,kJ/(kg·K);	
	t₁—— 人窑物料温度,C。	
4. 2.	.5 雾化蒸汽带人热 Q _s , GJ/h, 按(5)式计算	
	$Q_5 = D(i'' - i') \times 10^{-6} \dots$	(5)
式中	p: D——雾化蒸汽用量,kg/h;	
	i"——雾化蒸汽的热焓,kJ/h;	
	i'——环境温度下水的热焓,kJ/h。	
4. 2	. 6 总供给热 Q _{GG} , GJ/h, 按(6) 式计算	
	$Q_{GG} = Q_1 + Q_2 \cdots$	(6)
4. 2	.7 总输入能量 Q _x ,GJ/h,按(7)式计算	,
	$Q_{\lambda} \! = \! Q_{1} \! + \! Q_{2} \! + \! Q_{3} \! + \! Q_{4} \! + \! Q_{5} \cdots \cdots$	(7)

4. 3	输出能量计算
4. 3. 1	l 物料中水分蒸发吸热 Q。,GJ/h,按(8)式计算
	$\mathbf{Q}_{6} = \mathbf{W}_{s}(\mathbf{i}'' - \mathbf{i}') \times 10^{-6} \cdots \cdots$
式中:	· W。——人窑物料带水量,kg/h。
4. 3. 2	2 碳酸钙生成氧化钙反应吸热 Q₁,GJ/h,按(9)式计算
	$\mathbf{Q}_{7} = 3178 \times \mathbf{G}_{CaO} \times 10^{-6} \cdots (9)$
式中	: 3178生成 1kg 氧化钙时所吸热量,kJ/kg;
	Gco——石灰产量(以 100%氧化钙计),kg/h。
4. 3. 3	3 烧成石灰带出显热 Q ₈ ,GJ/h,按(10)式计算
	$Q_8 = G_{C_8O} \cdot c_{C_8O}(t_2 - t_0) \times 10^{-6} \dots \dots$
式中	: G _{CsO} 烧成石灰量,kg/h;
	c _{Cao} 石灰比热,kJ/(kg * K);
	t₂——石灰出窑温度,℃。
4. 3.	4 燃料含水蒸发吸热 Q。,GJ/h,按(11)式计算
	$Q_9 = W_s(i'' - i') \times 10^{-6}$ (11)
式中	: W _s ——人窑燃料含水量,kg/h;
-	i"—— 水蒸汽的热焓,kJ/kg;
	i'——环境温度下水的热焓,kJ/kg。
4. 3.	
	$Q_{10} = V_p \cdot c_p(t_p - t_0) \times 10^{-6}$
式中	: V _p → 排出干烟气量, m³/h;
	c _p ——干烟气平均比热,kJ/(m³·K);
	t _p
4. 3.	6 排烟中水蒸汽带出显热 Q ₁₁ ,GJ/h,按(13)式计算
	$Q_{11} = W_s \cdot c_s(t_p - t_0) \times 10^{-6} \dots \qquad (13)$
式中	: W _∗ ——排烟中水汽量·m³/h;
	c,——水蒸汽的比热,kJ/(m³·K);
4. 3.	7 燃料未完全燃烧损失热 Q ₁₂ , GJ/h, 按(14)式计算
	$Q_{12} = 10048 \cdot G_{CO} \times 10^{-6} \dots (14)$
式中	: G∞──排出烟气中一氧化碳含量,kg/h;
	10048
4. 3.	8
	$Q_{13} = 3.5965 \cdot F \cdot \alpha(t_3 - t_0) \times 10^{-6} \dots (15)$
式中	: F── 窑体总表面积 ,m²;
-41	α ——客体外壁对周围空气的传热系数, $W/(m^2 \cdot K)$;
	t ₃ ——客体外壁的平均温度, C。
4 2 4	0. 甘州坦生地 O. CI/b. 世(16)于计算


中国节能减损束撑网www,inipzg.co

	$\mathbf{Q}_{14} = \mathbf{Q}_{\lambda} - (\mathbf{Q}_{6} + \mathbf{Q}_{7} + \mathbf{Q}_{8} + \mathbf{Q}_{9} + \mathbf{Q}_{10} + \mathbf{Q}_{11} + \mathbf{Q}_{12} + \mathbf{Q}_{13}) \dots \dots$	(16)
4. 3. 1	10 总有效热 Q _{yx} ,GJ/h,按(17)式计算	
	$\mathbf{Q}_{yx} = \mathbf{Q}_{8} + \mathbf{Q}_{7} + \mathbf{Q}_{8} \cdots $	(17)
4. 3. 1	1 总输出能量 Q _出 ,GJ/h,按(18)式计算	
	$Q_{th} = Q_{\delta} + Q_{7} + Q_{8} + Q_{9} + Q_{10} + Q_{11} + Q_{12} + Q_{13} + Q_{14} \dots $	(18)
4. 4	石灰转窑正平衡热效率 η _E ,%,按(19)式计算	
	$\eta_{\rm IE} = \frac{Q_{\rm yx}}{Q_{\rm GG}} \times 100\% \qquad \cdots$	(19)

5 能量平衡表

序号	输入能量			输出能量 -		
	项 目	数量 GJ/h	百分数%	項 目	数量 GJ/h	百分数%
1	燃料供给燃烧热 Qi					
2	燃料供给显热 Q ₂					
3	人窑空气显热 Q ₃					
4	物料带入显热 Q。					
5	雾化蒸汽带人热 Qs					
6				物料中水分蒸发吸热Qs		
7				碳酸钙生成氧化钙反应吸热 Q		
8				烧成石灰带出显热Q。		
9				燃料含水蒸发吸热Q。		
10				排干烟带出显热 Q10		
11				排烟中水蒸汽带出显热 Q ₁₁		
12				燃料未完全燃烧损失热 Q ₁₂		
13				窑体辐射损失热 Q13		
14				其他损失热 Q ₁₄		
	合 计		100	合 计	100	

能量流向图

附录A

石灰转窑能量平衡及设备热效率计算实例

(参考件)

A1 热量平衡计算参数

- A1.1 计算基准温度为20℃。
- A1.2 燃料油

消耗量:1227 kg/h;

燃料油应用基低位发热量: 41215 kJ/kg;

入窑燃料油比热:1.884 kJ/(kg·K);

燃料油带水量:68 kg/h;

燃料油入窑温度:180℃。

A1.3 零化蒸汽

耗用量:1577 kg/h;

热 焓:3224 kJ/kg;

A1.4 白泥

绝干白泥量:8032 kg/h;

白泥比热:1.0467 kJ/(kg·K);

入窑温度:55℃;

白泥带水量:6184 kg/h;

水蒸汽的热焓:2676 kJ/kg。

A1.5 空气

入窑空气量:24326 m³/h;

平均比热:1.298 kJ/(kg·K);

入窑时空气温度:90 ℃。

A1.6 石灰

产成品灰量:4476 kg/h;

比热:1,047 kJ/(m³·K);

出容温度:234 °C。

A1.7 排烟

干烟气量:24976 m3/h;

干烟气平均比热:1.386 kJ/(m3·K);

排烟温度:165 ℃:

烟气中水蒸汽量:11486 m³/h;

水蒸汽比热:1.507 kJ/(m3 · K);

一氧化碳量:168 kg/h。

A1.8 输入输出的能量 Q 单位均以 GJ/h 计。

OB/T 1927, 16-93

A2 输入能量计算

A2.1 燃料油供给燃烧热Q:

 $Q_1 = 1227 \times 41215 \times 10^{-6} = 50.571$

A2.2 燃料油供给显热 Q。

 $Q_2 = 1227 \times 1.884 \times (180 - 20) \times 10^{-6} = 0.370$

A2.3 人窑空气显热 Q3

 $Q_2 = 24326 \times 1,298 \times (90 - 20) \times 10^{-6} = 2,210$

A2.4 物料(白泥)带人显热Q。

 $Q_4 = ((8032 \times 1.0467 \times (55 - 20) + 6184 \times 4.1868 \times (55 - 20))) \times 10^{-6} = 1.200$

A2.5 雾化蒸汽带入热 Q。

 $Q_5 = 1577 \times (3224 - 84) \times 10^{-6} = 4.952$

A2.6 总供给热 Qcc

 $Q_{cc} = 50.571 + 0.370 = 50.941$

A2.7 总输入能量 Q.

 $Q_1 = 50,571 + 0,370 + 2,210 + 1,200 + 4,952 = 59,303$

A3 输出能量计算

A3.1 物料(白泥)中水分蒸发吸热 Q。

 $Q_6 = 6184 \times (2676 - 84) \times 10^{-6} = 16,029$

A3.2 碳酸钙牛成氧化钙反应吸热 Q2

 $Q_7 = 3178 \times 4476 \times 0.82 \times 10^{-6} = 11.664$

A3.3 烧成石灰带出显热 Q。

 $Q_0 = 4476 \times 1,047 \times (234 - 20) \times 10^{-6} = 1,003$

A3.4 燃料油含水蒸发吸热 Q。

 $Q_0 = 68 \times (2676 - 84) \times 10^{-6} = 0.176$

A3.5 排干烟带出显热Q10

 $Q_{10} = 24976 \times 1.386 \times (165 - 20) \times 10^{-6} = 5.019$

A3.6 排烟中水蒸汽带出显热 Q11

 $Q_{11} = 11486 \times 1.507 \times (165 - 20) \times 10^{-6} = 2.510$

A3.7 燃料油未完全燃烧损失热 Q₁

 $Q_{12} = 168 \times 10048 \times 10^{-6} = 1.688$

A3.8 容体辐射损失热Q₁₃

 $Q_{12} = 3.5965 \times 612 \times (102 - 20) \times 12.44 \times 10^{-6} = 2.245$

A3.9 其他损失热Q₄

 $Q_{14} = 59.303 - (16.029 + 11.664 + 1.003 + 0.176 + 5.019 + 2.510 + 1.668 + 2.245$ = 18.969

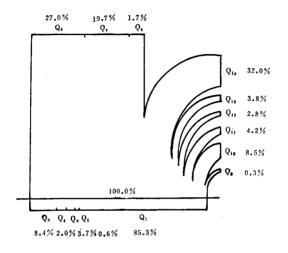
A3.10 总有效热 Q_{vx}

— 128 —

 $Q_{vx} = 16.029 + 11.664 + 1.003 = 28.696$

A3.11 总输出能量 Q_#

 $\mathbf{Q}_{th} = 16.029 + 11.664 + 1.003 + 0.176 + 5.019 + 2.510 + 1.688 + 2.245 + 18.969$ = 59.303


Α4 石灰转窑正平衡热效率(ημ)计算

 $\eta_{\text{IE}} = \frac{16.029 + 11.664 + 1.003}{50.941} \times 100\% = 56.3\%$

A5 能量平衡表

序	输入能量			输出能量		
片号	项 目	数量 GJ/h	百分数 %	项目	数量 GJ/h	百分数 %
1	燃料供给燃烧热Qı	50. 571	85.3		GJ/II	/0
2	燃料供给显热 Q2	0. 370	0.6			-
3	人窑空气显热 Q ₃	2. 210	3. 7			
4	物料带人显热 Q4	1. 201	. 2.0			-
5	雾化蒸汽带人热 Qs	4. 952	8. 4			·
6				物料中水分蒸发吸热Qs	16.029	27.0
7				碳酸钙生成氧化钙反应吸热 Q ₇	11.664	19. 7
8				燃成石灰带出显热Qs	1.003	1. 7
9	,			燃料含水蒸发吸热Q。	0.176	0.3
10				排干烟带出显热 Q10	5.019	8. 5
11				排烟中水蒸汽带出显热Qn	2. 510	4.2
12				燃料未完全燃烧损失热 Q12	1. 688	2. 8
13				窑体辐射损失热 Q ₁₃	2. 245	3. 8
14				其他损失热 Q ₁₄	18. 968	32. 0
	合 计	59. 303	100	合 计	59. 303	100

A6 能量流向图

附加说明:

本标准由轻工业部造纸工业司提出。

本标准由全国造纸标准化中心归口。

本标准由佳木斯造纸厂、轻工业部造纸工业科学研究所负责起草。

本标准主要起草人:董祥、赵贵清、刘江毅、张少玲。