QB

中华人民共和国行业标准

QB/T 1927,1928-93

制浆造纸设备能量平衡及 热效率 计算方法

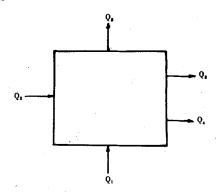
1994-01-06 发布

1994-08-01 实施

中华人民共和国行业标准

QB/T 1927. 9-93

漂白池能量平衡及热效率计算方法


1 主题内容与适用范围

本标准规定了漂白池能量平衡及热效率计算的一般原则和测算方法。 本标准适用于制浆造纸工业企业,以漂白池漂白纸浆的漂白系统。

2 引用标准

QB/T 1927.1 制浆造纸企业设备能量平衡计算通则

3 能量平衡方框图

3.1 体系边界

体系从供给源白池的蒸汽流量计开始至纸浆漂白终止为止。

3.2 图中符号说明

- Q1 ____ 加热纸浆蒸汽供给的热量,kJ;
- Q2---漂白化学反应放出的热量,kJ;
- Q3—加热绝干纸浆需要的热量,kJ;
- Q. ____ 加热纸浆中水分需要的热量,kJ;
- Q。——漂白池总热损失,kJ。

3.3 漂白池的能量平衡计算均以每池浆的热量变化计。

式中:V──纸浆漂白时加入的漂液量,m³; A──漂白有效氯浓度,kg/m³;

4. 能量平衡计算

4 能量平衡计算	
4.1 漂白有效总耗热量计算	
4.1.1 漂白有效总耗热量 Q _{YX} ,kJ,按(1)式计算	
$\mathbf{Q}_{\mathbf{Y}\mathbf{X}} = \mathbf{Q}_3 + \mathbf{Q}_4 \dots \dots$	()
式中:Qxx漂白有效总耗热量,kJ;	
Q。——加热绝干纸浆需要的热量,kJ;	
Q,——加热纸浆中水分需要的热量,kJ。	
4.1.2 加热绝干纸浆需要的热量 Q ₃ ,kJ,按(2)式计算	
$Q_3 = G_3 \cdot c_3(t_2 - t_1) \cdots \qquad (2)$?)
式中:G3——每池绝干浆的重量,kg;	
c ₃ ——纤维的比热,取 1. 423kJ/(kg·K);	
t₂── 纸浆漂白最高温度,℃;	
t₁——纸浆漂白起始温度,℃。	
注:摄氏温度 t(C)之差等于热力学温度(K)之差。	
4.1.3 加热纸浆中水分需要的热量 Q ₄ ,kJ,按(3)式计算	
$Q_4 = G_4 \cdot c_4(t_2 - t_1) \dots \qquad (3)$	3)
式中:G.——每池浆中水分的重量,kg;	
c ₄ ——水的比熱,取 4.187kJ/(kg・K)。	
4.2 漂白单位有效耗热量计算 Q'vx,kJ,按(4) 式计算	
$Q'_{XX} = \frac{Q_3 + Q_4}{G_3} \times 0.9 $ (4)	1)
式中:0.9——换算风干浆系数。	
4.3 实际供给漂白的热量计算	
4.3.1 实供漂白总热量 Qcc,kJ,按(5)式计算	
$Q_{GG} = Q_1 + Q_2 \cdots (S_{GG})$	<u>,)</u>
式中:Q1——加热纸浆蒸汽供给的热量,kJ;	
Q ₂ ——源白化学反应放出的热量,kJ。	
4.3.2 加热纸浆蒸汽供给的热量 Q ₁ ,kJ,按(6)式计算	
$Q_1 = D(i'' - i') \qquad (($	5)
式中:D——漂白纸浆所耗蒸汽量,kg;	
i"——蒸汽的热焓,kJ/kg;	
i'——纸浆漂白终止温度蒸汽凝结水的热焓,kJ/kg。	
4.3.3 漂白化学反应放出的热量 Q ₂ ,kJ,按(7)式计算	
$Q_2 = V \cdot A \cdot B$	()

B---单位有效氯放出的热量,取 4605kJ/kg。

4.4 实际供给漂白的单位热量计算

实际供给漂白的单位热量,是指外界向体系内供给每漂一个单位重量纸浆所需的热量。

4.4.1 实际供给漂白的单位热量 Q'cc,kJ/kg,按(8)式计算

$$Q'_{GG} = \frac{Q_1 + Q_2}{G_3} \times 0.9$$
 (8)

5 设备热效率计算

5.1 漂白池热效率η,%,按(9)式计算

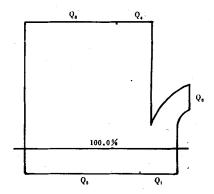
$$\eta = \frac{Q_{YX}}{Q_{GG}} \times 100\% = \frac{Q'_{YX}}{Q'_{GG}} \times 100\% = \frac{Q_3 + Q_4}{Q_1 + Q_2} \times 100\% \dots (9)$$

5.2 漂白池总热损失计算

漂白池总热损失是指池口散热损失、管道散热损失、蒸汽泄漏损失等,如直接测定、计算较 困难,可用反平衡求得。

5.2.1 漂白散热损失 Qss,kJ,按(10)式计算

$$Q_{SS} = Q_5 = Q_{GG} - Q_{YX} = Q_1 + Q_2 - (Q_3 + Q_4)$$
 (10)


5.2.2 漂白热损失率 ΔQ, %, 按(11) 式计算

$$\Delta Q = \frac{Q_{ss}}{Q_{cc}} \times 100\% \qquad (11)$$

能量平衡表

序号	输	人	能	量		輸	出	能	量	
	项	目		数量 kJ	百分数 %	项	Ħ		数量 kJ	百分数 %
1	加热纸浆蒸汽供	给热量	Ţ	-						
2	漂白化学反应放	出热量			-					
3						加热绝干纸浆	需要的热量			
4			$\neg \uparrow$			加热纸浆中水	分需要的热力	ıt		
5						漂白池总热拔	!失			
	合	计				合	计	1		

7 能量流向图

附录 A 贝尔曼式双循环漂白池 能量平衡及热效率计算实例 (参考件)

A1 漂白池热平衡测试数据

以下数据均以每一漂白池浆料计。

- A1.1 绝干浆生产量 G₃=16600kg
- A1.2 纸浆中全部水分的重量 G,=294400kg
- A1.3 纸浆漂白起始温度 t₁=15℃
- A1.4 纸浆漂白最高温度 t₂=28℃
- A1.5 漂液有效氯浓度 A=22.7kg/m3
- A1.6 漂液加入量 V=45m3
- A1.7 终漂时浆中残氯极少(忽略不计)
- A1.8 加热纸浆用的蒸汽重量 D=5160kg
- A1.9 蒸汽热焓 i"=2854kJ/kg
- A1.10 纸浆中水分的热焓 i' = 105kJ/kg
- A1.11 漂白化学反应单位有效氯放出的热量 B=4605kJ/kg
- A1.12 纤维的比热 c₃=1.423kJ/(kg·K)
- A1.13 水的比热 c₄=4.187kJ/(kg·K)

A2 源白池能量平衡计算

A2.1 加热绝干纸浆需要的热量计算

$$Q_3 = G_3 \cdot c_3(t_2 - t_1)$$

$$=16600\times1.423\times(28-15)$$

=307083kJ

A2.2 加热纸浆中水分需要的热量计算

$$Q_4 = G_4 \cdot c_4(t_2 - t_1)$$

 $=294400\times4.187\times(28-15)$

16024486kJ

A2.3 漂白池有效总耗热量计算

 $Q_{YX} = Q_3 + Q_4 = 307083 + 16024486 = 16331569 \text{kJ}$

A2.4 漂白有效单位耗热量计算

$$Q_{YX} = \frac{Q_3 + Q_4}{G_3} \times 0.9$$

$$= \frac{307083 + 16024486}{16600} \times 0.9$$

$$= 885kJ/kg(风干浆)$$

A2.5 加热纸浆实际需要热量计算

$$\mathbf{Q}_1 = \mathbf{D}(\mathbf{i''} - \mathbf{i'})$$

$$=5160 \times (2854 - 105)$$

=14184840kJ

A2.6 漂白化学反应放出的热量计算

 $Q_2 = V \cdot A \cdot B = 45 \times 22.7 \times 4605 = 4704008 kJ$

A2.7 实供漂白池总热量计算

 $Q_{cc} = Q_1 + Q_2 = 14184840 + 4704008 = 188888848kJ$

A2.8 实供漂白单位热量计算

$$Q'_{GG} = \frac{Q_1 + Q_2}{G_3} \times 0.9 = \frac{14184840 + 4704008}{16600} \times 0.9$$

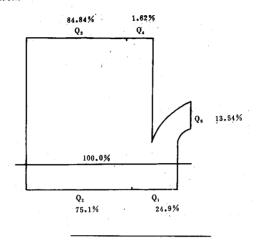
= 1024kJ/kg(风干浆)

A3 漂白池热效率计算

$$\eta = \frac{Q_{YX}}{Q_{GG}} \times 100\% = \frac{16331569}{18888848} \times 100\% = 86.46\%$$

A3.1 漂白池总热损失计算

$$Q_{ss} = Q_{GG} - Q_{YX} = 18888848 - 16331569 = 2557828kJ$$


A3.2 漂白池热损失率计算。

$$\Delta Q = \frac{Q_{ss}}{Q_{GG}} \times 100\% = \frac{2557279}{18888848} \times 100\% = 13.54\%$$

A4 漂白池能量平衡表

	输 入	能		・ 输 出 能	量	
序 号	项 目	数量 kJ	百分数 %	项目	数量 kJ	百分数 %
1	蒸汽供给热量 Q _i	14184840	75. 1			
2	漂白化学反应放热量 Q2	4704008	24. 9			
3				加热纸浆绝干纤维用热量Q。	307083	1.62
4				加热纸浆中水分用热量Q。	16024486	84. 84
5				漂白池总热损失 Qs	2557828	13.54
	合 计	18888848	100	合 计	18888848	100

A5 能量流向图

附加说明:

本标准由轻工业部造纸工业司提出。

本标准由全国造纸标准化中心归口。

本标准由金城造纸总厂负责起草。

本标准主要起草人:毕玉增、张国忱、栾立文、付晓艳。